2025-11-28 00:35:46 +09:00

339 lines
9.7 KiB
C++

//------------------------------------------------------------------------------
// File: PlaneScene.cpp
//
// Desc: DirectShow sample code - implementation of the CPlaneScene class
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include "stdafx.h"
#include "util.h"
#include "PlaneScene.h"
#define _USE_MATH_DEFINES
#include <math.h>
#define D3DFVF_CUSTOMVERTEX ( D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_TEX1 )
// Matrix functions
D3DMATRIX* MatrixPerspectiveFovLH(
D3DMATRIX * pOut,
FLOAT fovy,
FLOAT Aspect,
FLOAT zn,
FLOAT zf
);
D3DMATRIX* MatrixLookAtLH(
D3DMATRIX *pOut,
const D3DVECTOR *pEye,
const D3DVECTOR *pAt,
const D3DVECTOR *pUp
);
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CPlaneScene::CPlaneScene()
{
m_vertices[0].position = CUSTOMVERTEX::Position(-1.0f, 1.0f, 0.0f); // top left
m_vertices[1].position = CUSTOMVERTEX::Position(-1.0f, -1.0f, 0.0f); // bottom left
m_vertices[2].position = CUSTOMVERTEX::Position( 1.0f, 1.0f, 0.0f); // top right
m_vertices[3].position = CUSTOMVERTEX::Position( 1.0f, -1.0f, 0.0f); // bottom right
// set up diffusion:
m_vertices[0].color = 0xffffffff;
m_vertices[1].color = 0xff0000ff;
m_vertices[2].color = 0xffffffff;
m_vertices[3].color = 0xff0000ff;
// set up texture coordinates
m_vertices[0].tu = 0.0f; m_vertices[0].tv = 0.0f; // low left
m_vertices[1].tu = 0.0f; m_vertices[1].tv = 1.0f; // high left
m_vertices[2].tu = 1.0f; m_vertices[2].tv = 0.0f; // low right
m_vertices[3].tu = 1.0f; m_vertices[3].tv = 1.0f; // high right
}
CPlaneScene::~CPlaneScene()
{
}
HRESULT
CPlaneScene::Init(IDirect3DDevice9* d3ddev)
{
HRESULT hr;
if( ! d3ddev )
return E_POINTER;
FAIL_RET(hr = d3ddev->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE));
FAIL_RET(hr = d3ddev->SetRenderState(D3DRS_LIGHTING, FALSE));
FAIL_RET(hr = d3ddev->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE));
FAIL_RET(hr = d3ddev->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA));
FAIL_RET(hr = d3ddev->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA));
FAIL_RET(hr = d3ddev->SetRenderState(D3DRS_ALPHATESTENABLE, TRUE));
FAIL_RET(hr = d3ddev->SetRenderState(D3DRS_ALPHAREF, 0x10));
FAIL_RET(hr = d3ddev->SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_GREATER));
FAIL_RET(hr = d3ddev->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP));
FAIL_RET(hr = d3ddev->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP));
FAIL_RET(hr = d3ddev->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR));
FAIL_RET(hr = d3ddev->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR));
FAIL_RET(hr = d3ddev->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR));
m_vertexBuffer = NULL;
d3ddev->CreateVertexBuffer(sizeof(m_vertices),D3DUSAGE_WRITEONLY,D3DFVF_CUSTOMVERTEX,D3DPOOL_MANAGED,& m_vertexBuffer, NULL );
SmartPtr<IDirect3DSurface9> backBuffer;
FAIL_RET( d3ddev->GetBackBuffer( 0, 0,
D3DBACKBUFFER_TYPE_MONO,
& backBuffer ) );
D3DSURFACE_DESC backBufferDesc;
backBuffer->GetDesc( & backBufferDesc );
// Set the projection matrix
D3DMATRIX matProj;
FLOAT fAspect = backBufferDesc.Width /
(float)backBufferDesc.Height;
MatrixPerspectiveFovLH( &matProj, (float)M_PI_4, fAspect,
1.0f, 100.0f );
FAIL_RET( d3ddev->SetTransform( D3DTS_PROJECTION, &matProj ) );
D3DVECTOR from = { 1.0f, 1.0f, -3.0f };
D3DVECTOR at = { 0.0f, 0.0f, 0.0f };
D3DVECTOR up = { 0.0f, 1.0f, 0.0f };
D3DMATRIX matView;
MatrixLookAtLH( &matView, & from, & at, & up);
FAIL_RET( d3ddev->SetTransform( D3DTS_VIEW, &matView ) );
m_time = GetTickCount();
return hr;
}
HRESULT
CPlaneScene::DrawScene( IDirect3DDevice9* d3ddev,
IDirect3DTexture9* texture )
{
HRESULT hr;
if( !( d3ddev && texture ) )
{
return E_POINTER;
}
if( m_vertexBuffer == NULL )
{
return D3DERR_INVALIDCALL;
}
// get the difference in time
DWORD dwCurrentTime;
dwCurrentTime = GetTickCount();
double difference = m_time - dwCurrentTime ;
// figure out the rotation of the plane
float x = (float) ( -cos(difference / 2000.0 ) ) ;
float y = (float) ( cos(difference / 2000.0 ) ) ;
float z = (float) ( sin(difference / 2000.0 ) ) ;
// update the two rotating vertices with the new position
m_vertices[0].position = CUSTOMVERTEX::Position(x, y, z); // top left
m_vertices[3].position = CUSTOMVERTEX::Position(-x, -y, -z); // bottom right
// Adjust the color so the blue is always on the bottom.
// As the corner approaches the bottom, get rid of all the other
// colors besides blue
DWORD mask0 = (DWORD) (255 * ( ( y + 1.0 )/ 2.0 ));
DWORD mask3 = (DWORD) (255 * ( ( -y + 1.0 )/ 2.0 ));
m_vertices[0].color = 0xff0000ff | ( mask0 << 16 ) | ( mask0 << 8 );
m_vertices[3].color = 0xff0000ff | ( mask3 << 16 ) | ( mask3 << 8 );
// write the new vertex information into the buffer
void* pData;
FAIL_RET( m_vertexBuffer->Lock(0,sizeof(pData), &pData,0) );
memcpy(pData,m_vertices,sizeof(m_vertices));
FAIL_RET( m_vertexBuffer->Unlock() );
// clear the scene so we don't have any articats left
d3ddev->Clear( 0L, NULL, D3DCLEAR_TARGET,
D3DCOLOR_XRGB(255,255,255), 1.0f, 0L );
FAIL_RET( d3ddev->BeginScene() );
FAIL_RET( d3ddev->SetTexture( 0, texture));
FAIL_RET(hr = d3ddev->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_MODULATE));
FAIL_RET(hr = d3ddev->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE));
FAIL_RET(hr = d3ddev->SetTextureStageState(0, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE));
FAIL_RET(hr = d3ddev->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE));
FAIL_RET( d3ddev->SetStreamSource(0, m_vertexBuffer, 0, sizeof(CPlaneScene::CUSTOMVERTEX) ) ); //set next source ( NEW )
FAIL_RET( d3ddev->SetFVF( D3DFVF_CUSTOMVERTEX ) );
FAIL_RET( d3ddev->DrawPrimitive(D3DPT_TRIANGLESTRIP,0,2) ); //draw quad
FAIL_RET( d3ddev->SetTexture( 0, NULL));
FAIL_RET( d3ddev->EndScene());
return hr;
}
void
CPlaneScene::SetSrcRect( float fTU, float fTV )
{
m_vertices[0].tu = 0.0f; m_vertices[0].tv = 0.0f; // low left
m_vertices[1].tu = 0.0f; m_vertices[1].tv = fTV; // high left
m_vertices[2].tu = fTU; m_vertices[2].tv = 0.0f; // low right
m_vertices[3].tu = fTU; m_vertices[3].tv = fTV; // high right
}
//////////////////////////////////////////////////////////////////////
//
// Matrix functions
//
// The purpose of these functions is to remove any dependencies on
// the D3DX utility library from this sample. The functions are
// modeled after the equivalent D3DX functions. In a real application,
// you should use the D3DX library instead.
//
//////////////////////////////////////////////////////////////////////
template <class T>
inline T SQUARED(T x)
{
return x * x;
}
D3DVECTOR* VecSubtract(D3DVECTOR *pOut, const D3DVECTOR *pV1, const D3DVECTOR *pV2)
{
pOut->x = pV1->x - pV2->x;
pOut->y = pV1->y - pV2->y;
pOut->z = pV1->z - pV2->z;
return pOut;
}
D3DVECTOR* VecNormalize(D3DVECTOR *pOut, const D3DVECTOR *pV1)
{
FLOAT norm_sq = SQUARED(pV1->x) + SQUARED(pV1->y) + SQUARED(pV1->z);
if (norm_sq > FLT_MIN)
{
FLOAT f = sqrtf(norm_sq);
pOut->x = pV1->x / f;
pOut->y = pV1->y / f;
pOut->z = pV1->z / f;
}
else
{
pOut->x = 0.0f;
pOut->y = 0.0f;
pOut->z = 0.0f;
}
return pOut;
}
D3DVECTOR* VecCross(D3DVECTOR *pOut, const D3DVECTOR *pV1, const D3DVECTOR *pV2)
{
pOut->x = pV1->y * pV2->z - pV1->z * pV2->y;
pOut->y = pV1->z * pV2->x - pV1->x * pV2->z;
pOut->z = pV1->x * pV2->y - pV1->y * pV2->x;
return pOut;
}
FLOAT VecDot(const D3DVECTOR *pV1, const D3DVECTOR *pV2)
{
return pV1->x * pV2->x + pV1->y * pV2->y + pV1->z * pV2->z;
}
// MatrixLookAtLH: Approximately equivalent to D3DXMatrixLookAtLH.
D3DMATRIX* MatrixLookAtLH(
D3DMATRIX *pOut,
const D3DVECTOR *pEye,
const D3DVECTOR *pAt,
const D3DVECTOR *pUp
)
{
D3DVECTOR vecX, vecY, vecZ;
// Compute direction of gaze. (+Z)
VecSubtract(&vecZ, pAt, pEye);
VecNormalize(&vecZ, &vecZ);
// Compute orthogonal axes from cross product of gaze and pUp vector.
VecCross(&vecX, pUp, &vecZ);
VecNormalize(&vecX, &vecX);
VecCross(&vecY, &vecZ, &vecX);
// Set rotation and translate by pEye
pOut->_11 = vecX.x;
pOut->_21 = vecX.y;
pOut->_31 = vecX.z;
pOut->_41 = -VecDot(&vecX, pEye);
pOut->_12 = vecY.x;
pOut->_22 = vecY.y;
pOut->_32 = vecY.z;
pOut->_42 = -VecDot(&vecY, pEye);
pOut->_13 = vecZ.x;
pOut->_23 = vecZ.y;
pOut->_33 = vecZ.z;
pOut->_43 = -VecDot(&vecZ, pEye);
pOut->_14 = 0.0f;
pOut->_24 = 0.0f;
pOut->_34 = 0.0f;
pOut->_44 = 1.0f;
return pOut;
}
// MatrixPerspectiveFovLH: Approximately equivalent to D3DXMatrixPerspectiveFovLH.
D3DMATRIX* MatrixPerspectiveFovLH(
D3DMATRIX * pOut,
FLOAT fovy,
FLOAT Aspect,
FLOAT zn,
FLOAT zf
)
{
// yScale = cot(fovy/2)
FLOAT yScale = cosf(fovy * 0.5f) / sinf(fovy * 0.5f);
FLOAT xScale = yScale / Aspect;
ZeroMemory(pOut, sizeof(D3DMATRIX));
pOut->_11 = xScale;
pOut->_22 = yScale;
pOut->_33 = zf / (zf - zn);
pOut->_34 = 1.0f;
pOut->_43 = -pOut->_33 * zn;
return pOut;
}