2025-11-28 00:35:46 +09:00

611 lines
15 KiB
C++

// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
// Copyright (c) Microsoft Corporation. All rights reserved
#pragma once
template<class T> class RdcSmartArray
{
public:
RdcSmartArray();
~RdcSmartArray();
size_t Size() const ;
size_t Capacity() const ;
T &operator[] ( size_t i );
const T &operator[] ( size_t i ) const ;
T *Begin() const;
T *End() const;
// single element
T *Append();
bool Append ( const T &t );
T *Insert ( size_t i );
bool Insert ( size_t i, const T &t );
void Remove ( size_t i );
// multiple elements
T *AppendItems ( size_t c );
bool AppendItems ( const T *p, size_t c );
T *InsertItems ( size_t i, size_t c );
bool InsertItems ( size_t i, const T *p, size_t c );
void RemoveItems ( size_t i, size_t c );
// misc methods
void Clear();
void Truncate ( size_t i );
bool ReserveExact ( size_t n );
bool ReserveAtLeast ( size_t n );
private:
// array starts with this size
static const size_t s_cMinAlloc = 16;
// pointer to items
T *m_p;
// used items
size_t m_nUsed;
// allocated items
size_t m_nAllocated;
// left unimplemented
RdcSmartArray ( const RdcSmartArray<T> & );
// left unimplemented
RdcSmartArray &operator= ( const RdcSmartArray<T> & );
};
//---------------------------------------------------------------------------
// Name: RdcSmartArray::RdcSmartArray
//
// Constructor
//
// Arguments:
// None
//---------------------------------------------------------------------------
template <class T> inline RdcSmartArray<T>::RdcSmartArray()
{
m_p = NULL;
m_nUsed = 0;
m_nAllocated = 0;
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::~RdcSmartArray
//
// Destructor
//---------------------------------------------------------------------------
template <class T> inline RdcSmartArray<T>::~RdcSmartArray()
{
Clear();
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::Size
//
// Request number of elements in an array
//
// Arguments:
// None
//
// Returns:
// number of elements in an array
//---------------------------------------------------------------------------
template <class T> inline size_t RdcSmartArray<T>::Size() const
{
return m_nUsed;
}
template <class T> inline size_t RdcSmartArray<T>::Capacity() const
{
return m_nAllocated;
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::operator[]
//
// Indexation operator.
// Array template is the place, where it's reasonable to define it.
//
// Arguments:
// i element index
//
// Returns:
// Reference to indexed element
//---------------------------------------------------------------------------
template <class T> T &RdcSmartArray<T>::operator[] ( size_t i )
{
RDCAssert ( i < m_nUsed );
return m_p[i];
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::operator[]
//
// Indexation operator for constant object.
// The same as operator[], but returns constant reference.
// Compilator must be smart enough to choose apropriate operator.
//
// Arguments:
// i element index
//
// Returns:
// Constant reference to indexed element
//---------------------------------------------------------------------------
template <class T> const T &RdcSmartArray<T>::operator[] ( size_t i ) const
{
RDCAssert ( i < m_nUsed );
return m_p[i];
}
template <class T> T *RdcSmartArray<T>::Begin() const
{
RDCAssert ( m_p );
return m_p;
}
template <class T> T *RdcSmartArray<T>::End() const
{
RDCAssert ( m_p );
return m_p + m_nUsed;
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::ReserveExact
//
// Extends array.
//
// Arguments:
// n array size in elements
//
// Returns:
// true if array has been successfuly extended
//---------------------------------------------------------------------------
template <class T> bool RdcSmartArray<T>::ReserveExact ( size_t n )
{
// must fit data
n = Maximum ( n, s_cMinAlloc );
n = Maximum ( n, m_nUsed );
// is changed ?
if ( n == m_nAllocated )
return true;
// Check for overflow of the allocation...
if ( n > 0x7ffffffe / sizeof ( T ) )
{
// We should throw an exception if exceptions
// are being used, and just return NULL otherwise.
return false;
}
// allocate
T *p = ( T * ) new ( std::nothrow ) BYTE[n * sizeof ( T ) ];
if ( p == NULL )
return false;
// copy existing data (no constructors!)
if ( m_nUsed != 0 )
CopyMemory ( p, m_p, m_nUsed * sizeof ( T ) );
// free old data (no destructors!)
if ( m_nAllocated != 0 )
delete [] ( BYTE* ) m_p;
// reassign
m_p = p;
m_nAllocated = n;
return true;
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::ReserveAtLeast
//
// Private function, extends array with extraallocation.
//
// Arguments:
// n new array size in elements
//
// Returns:
// true if array has been successfuly extended
//---------------------------------------------------------------------------
template <class T> bool RdcSmartArray<T>::ReserveAtLeast ( size_t n )
{
if ( n > m_nAllocated )
{
// too large ?
if ( int ( n ) < 0 )
return false;
// find power of two greater of equal to n
size_t nAlloc = s_cMinAlloc;
while ( nAlloc < n )
nAlloc <<= 1;
// allocate this size
if ( !ReserveExact ( nAlloc ) )
return false;
}
return true;
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::Append
//
// Append element to array
// Empty constructor is called for the new element.
//
// Arguments:
// None
//
// Returns:
// Pointer to a new element or NULL, if can't allocate
//---------------------------------------------------------------------------
template <class T> T *RdcSmartArray<T>::Append()
{
if ( m_nUsed == m_nAllocated && !ReserveAtLeast ( m_nUsed + 1 ) )
return NULL;
// call constructor
T *p = new ( m_p + m_nUsed ) T;
// allocated
m_nUsed++;
return p;
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::Append
//
// Append element to array
// Copy constructor is called for the new element.
//
// Arguments:
// t element to append
//
// Returns:
// true is successfuly appended, false if can't allocate
//---------------------------------------------------------------------------
template <class T> bool RdcSmartArray<T>::Append ( const T &t )
{
if ( m_nUsed == m_nAllocated && !ReserveAtLeast ( m_nUsed + 1 ) )
return false;
// call constructor
new ( m_p + m_nUsed ) T ( t );
// allocated
m_nUsed++;
return true;
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::Insert
//
// Insert element into array
// Empty constructor is called for the new element.
//
// Arguments:
// nAt index to insert before
// May be equal to Size(), that means Append
//
// Returns:
// Pointer to a new element or NULL, if can't allocate
//---------------------------------------------------------------------------
template <class T> T *RdcSmartArray<T>::Insert ( size_t nAt )
{
RDCAssert ( nAt <= m_nUsed );
// alloc element
if ( m_nUsed == m_nAllocated && !ReserveAtLeast ( m_nUsed + 1 ) )
return NULL;
// shift data after nAt
if ( nAt < m_nUsed )
MoveMemory ( m_p + nAt + 1, m_p + nAt, ( m_nUsed - nAt ) * sizeof ( T ) );
m_nUsed++;
// call constructor
return new ( m_p + nAt ) T;
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::Insert
//
// Insert element into array
// Copy constructor is called for the new element.
//
// Arguments:
// nAt index to insert before
// May be equal to Size(), that means Append
// t element to insert
//
// Returns:
// true is successfuly inserted, false if can't allocate
//---------------------------------------------------------------------------
template <class T> bool RdcSmartArray<T>::Insert ( size_t nAt, const T &t )
{
RDCAssert ( nAt <= m_nUsed );
// alloc element
if ( m_nUsed == m_nAllocated && !ReserveAtLeast ( m_nUsed + 1 ) )
return false;
// shift data after nAt
if ( nAt < m_nUsed )
MoveMemory ( m_p + nAt + 1, m_p + nAt, ( m_nUsed - nAt ) * sizeof ( T ) );
m_nUsed++;
// call constructor
new ( m_p + nAt ) T ( t );
return true;
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::Remove
//
// Remove an element from an array
//
// Arguments:
// nAt element index
//
// Returns:
// None
//---------------------------------------------------------------------------
template <class T> void RdcSmartArray<T>::Remove ( size_t nAt )
{
RDCAssert ( nAt < m_nUsed );
// call destructor
( m_p + nAt ) ->T::~T();
// shift data after nAt
if ( nAt + 1 < m_nUsed )
MoveMemory ( m_p + nAt, m_p + nAt + 1, ( m_nUsed - nAt - 1 ) * sizeof ( T ) );
m_nUsed--;
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::AppendItems
//
// Append c items to array
// Empty constructor is called for every new element.
//
// Arguments:
// c number of elements to append
//
// Returns:
// Pointer to the start of new elements or NULL, if can't allocate
//---------------------------------------------------------------------------
template <class T> T *RdcSmartArray<T>::AppendItems ( size_t c )
{
size_t nNewSize = m_nUsed + c;
if ( nNewSize > m_nAllocated && !ReserveAtLeast ( nNewSize ) )
return NULL;
T *ptr = m_p + m_nUsed;
// call constructors
while ( c != 0 )
{
new ( m_p + m_nUsed ) T;
m_nUsed++;
c--;
}
return ptr;
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::AppendItems
//
// Append elements to array
// Copy constructor is called for every new element.
//
// Arguments:
// p pointer to elements to append
// c number of elements to append
//
// Returns:
// true is successfuly appended, false if can't allocate
//---------------------------------------------------------------------------
template <class T> bool RdcSmartArray<T>::AppendItems ( const T *p, size_t c )
{
RDCAssert ( c == 0 || p != NULL );
size_t nNewSize = m_nUsed + c;
if ( nNewSize > m_nAllocated && !ReserveAtLeast ( nNewSize ) )
return false;
// call constructors
while ( c != 0 )
{
new ( m_p + m_nUsed ) T ( *p++ );
m_nUsed++;
c--;
}
return true;
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::InsertItems
//
// Insert elements into array
// Empty constructor is called for every new element.
//
// Arguments:
// nAt index to insert before
// May be equal to Size(), that means Append
// c number of elements to insert
//
// Returns:
// Pointer to start of new elements or NULL, if can't allocate
//---------------------------------------------------------------------------
template <class T> T *RdcSmartArray<T>::InsertItems ( size_t nAt, size_t c )
{
RDCAssert ( nAt <= m_nUsed );
size_t nNewSize = m_nUsed + c;
if ( nNewSize > m_nAllocated && !ReserveAtLeast ( nNewSize ) )
return NULL;
// shift data after nAt
if ( nAt < m_nUsed )
MoveMemory ( m_p + nAt + c, m_p + nAt, ( m_nUsed - nAt ) * sizeof ( T ) );
m_nUsed += c;
T *ptr = m_p + nAt;
// call constructors
while ( c )
{
new ( m_p + nAt++ ) T;
c--;
}
return ptr;
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::InsertItems
//
// Insert elements into array
// Copy constructor is called for every new element.
//
// Arguments:
// nAt index to insert before
// May be equal to Size(), that means Append
// p pointer to elements to insert
// c number of elements to insert
//
// Returns:
// true is successfuly inserted, false if can't allocate
//---------------------------------------------------------------------------
template <class T> bool RdcSmartArray<T>::InsertItems ( size_t nAt, const T *p, size_t c )
{
RDCAssert ( c == 0 || p != NULL );
RDCAssert ( nAt <= m_nUsed );
size_t nNewSize = m_nUsed + c;
if ( nNewSize > m_nAllocated && !ReserveAtLeast ( nNewSize ) )
return false;
// shift data after nAt
if ( nAt < m_nUsed )
MoveMemory ( m_p + nAt + c, m_p + nAt, ( m_nUsed - nAt ) * sizeof ( T ) );
m_nUsed += c;
// call constructors
while ( c != 0 )
{
new ( m_p + nAt++ ) T ( *p++ );
c--;
}
return true;
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::RemoveItems
//
// Remove an elements from an array
//
// Arguments:
// nAt element index
// c elements to remove
//
// Returns:
// None
//---------------------------------------------------------------------------
template <class T> void RdcSmartArray<T>::RemoveItems ( size_t nAt, size_t c )
{
RDCAssert ( nAt + c <= m_nUsed );
// call destructors
size_t nEnd = nAt + c;
for ( size_t i = nAt; i < nEnd; i++ )
( m_p + i ) ->T::~T();
// shift data after nAt
if ( nEnd < m_nUsed )
MoveMemory ( m_p + nAt, m_p + nEnd, ( m_nUsed - nEnd ) * sizeof ( T ) );
m_nUsed -= c;
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::Truncate
//
// Truncate array to given size
//
// Arguments:
// n new count of elements
//
// Returns:
// None
//---------------------------------------------------------------------------
template <class T> void RdcSmartArray<T>::Truncate ( size_t n )
{
while ( m_nUsed > n )
{
--m_nUsed;
// call destructor now
( m_p + m_nUsed ) ->T::~T();
}
}
//---------------------------------------------------------------------------
// Name: RdcSmartArray::Clear
//
// Remove all elements from an array.
//
// Arguments:
// None
//
// Returns:
// None
//---------------------------------------------------------------------------
template <class T> void RdcSmartArray<T>::Clear()
{
Truncate ( 0 );
if ( m_nAllocated != 0 )
{
// free, no destructors!
delete [] ( BYTE* ) m_p;
m_p = NULL;
m_nAllocated = 0;
}
}